Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR
نویسندگان
چکیده
Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.
منابع مشابه
Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bil...
متن کاملStructural model reveals key interactions in the assembly of the pregnane X receptor/corepressor complex.
The human pregnane X receptor (PXR), also known as steroid and xenobiotic receptor, is a member of the orphan nuclear receptors and mediates the mammalian xenobiotic response with broad specificity and implications for drug clearance. The mouse pregnane X receptor is highly similar to the human ortholog in structure but with subtle species differentiation in the ligand binding domain (LBD). The...
متن کاملRegulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT).
The pregnane X receptor (PXR) is an orphan nuclear receptor predominantly expressed in liver and intestine. PXR coordinates hepatic responses to prevent liver injury induced by environmental toxins. PXR activates cytochrome P450 3A4 gene expression upon binding to rifampicin (Rif) and clotrimazole (CTZ) by recruiting transcriptional coactivators. It remains unclear whether and how PXR regulates...
متن کاملEpigenetic regulation of transcriptional activity of pregnane X receptor by protein arginine methyltransferase 1.
Pregnane X receptor (PXR) is a ligand-dependent transcription factor, regulating gene expression of enzymes and transporters involved in xenobiotic/drug metabolism. Here, we report that protein arginine methyltransferase 1 (PRMT1) is required for the transcriptional activity of PXR. PRMT1 regulates expression of numerous genes, including nuclear receptor-regulated transcription, through methyla...
متن کاملTwo-stage glucocorticoid induction of CYP3A23 through both the glucocorticoid and pregnane X receptors.
Glucocorticoid inducibility of the CYP3A23 gene is conferred by a multisite unit comprising binding sites for several members of the nuclear receptor superfamily of transcription factors, including the chicken ovalbumin upstream promoter-transcription factor COUP-TF, pregnane X receptor (PXR), and hepatocyte nuclear factor 4 (HNF-4). The presence of three binding sites, each of which interacts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2009